21020 Cyanine3 NHS ester, 5 mg 2730.00

Cyanine3 NHS ester

21020 Cyanine3 NHS ester, 5 mg 2730.00

Cyanine3 NHS ester是标记生物分子的氨基基团的活性染料,是Cy3® NHS ester的类似物。该荧光染料是可溶性蛋白、多肽和寡核苷酸/DNA的理想标记物。对于痕量蛋白质,可以考虑用水溶的不需要共溶剂的sulfo-Cyanine3 NHS ester。Cyanine3 NHS ester可以替代Cy3®, Alexa Fluor 546, and DyLight 549。

 

订购货号 产品名称及规格 价格(¥)
11020 Cyanine3 NHS ester, 1 mg 1430.00
21020 Cyanine3 NHS ester, 5 mg 2730.00
41020 Cyanine3 NHS ester, 25 mg 5330.00
51020 Cyanine3 NHS ester, 50 mg 9035.00
61020 Cyanine3 NHS ester, 100 mg 15470.00

 

 

Cyanine3 NHS ester是标记生物分子的氨基基团的活性染料,是Cy3® NHS ester的类似物。该荧光染料是可溶性蛋白、多肽和寡核苷酸/DNA的理想标记物。对于痕量蛋白质,可以考虑用水溶的不需要共溶剂的sulfo-Cyanine3 NHS ester
Cyanine3 NHS ester可以替代Cy3®, Alexa Fluor 546, and DyLight 549。
 

Cy® is a trademark of GE Healthcare.

 

General properties

 

Appearance: red powder
Mass spec M+ increment: 474.2
Molecular weight: 590.15
Molecular formula: C34H40ClN3O4
Solubility: soluble in organic solvents (DMF, DMSO, dichloromethane), insoluble in water
Quality control: NMR 1H and HPLC-MS (95%)
Storage conditions: Storage: 24 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate.
MSDS: Download

Spectral properties

 

Excitation maximum, nm: 555
Extinction coefficient at excitation maximum, Lmol-1cm-1: 150000
Emission maximum, nm: 570
Fluorescence quantum yield: 0.31

 

Product citations

  • Cao, Z.; Partyka, K.; McDonald, M.; Brouhard, E.; Hincapie, M.; Brand, R.E.; Hancock, W.S.; Haab, B.B. Modulation of Glycan Detection on Specific Glycoproteins by Lectin Multimerization. Analytical Chemistry, 2013, 85(3), 1689-1698. doi:10.1021/ac302826a
  • Haller, A.; Altman, R.B.; Souliere, M.F.; Blanchard, S.C.; Micura, R. Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution. Proceedings of the National Academy of Sciences, 2013, 110(11), 4188-4193. doi:10.1073/pnas.1218062110
  • Kaastrup, K.; Chan, L.; Sikes, H.D. Impact of Dissociation Constant on the Detection Sensitivity of Polymerization-Based Signal Amplification Reactions. Analytical Chemistry, 2013, 85(17), 8055-8060. doi: 10.1021/ac4018988
  • Gatzogiannis, E.; Chen, Z.; Wei, L.; Wombacher, R.; Kao, Y.-T.; Yefremov, G.; Cornish, V.W.; Min, W. Mapping protein-specific micro-environments in live cells by fluorescence lifetime imaging of a hybrid genetic-chemical molecular rotor tag.Chemical Communications, 2012, 48(69), 8694-8694. doi: 10.1039/c2cc33133k
  • Kaastrup, K.; Sikes, H.D. Polymerization-based signal amplification under ambient conditions with thirty-five second reaction times. Lab on a Chip, 2012, 12(20), 4055-4055. doi: 10.1039/c2lc40584a
  1. Choi, E.B.; Choi, J.; Bae, S.R.; Kim, H.-O.; Jang, E.; Kang, B.; Kim, M.-H.; Kim, B.; Suh, J.-S.; Lee, K. et al. Colourimetric redox-polyaniline nanoindicator for in situ vesicular trafficking of intracellular transport. Nano Research, 2014. doi:10.1007/s12274-014-0597-6
  2. Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation,2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
  3. Kim, J.; Yang, Y.; Song, S.S.; Na, J.-H.; Oh, K.J.; Jeong, C.; Yu, Y.G.; Shin, Y.-K. Beta-Amyloid Oligomers Activate Apoptotic BAK Pore for Cytochrome c Release. Biophysical Journal, 2014, 107(7), 1601-1608. doi: 10.1016/j.bpj.2014.07.074
  4. Albertazzi, L.; Martinez-Veracoechea, F.J.; Leenders, C.M.A.; Voets, I.K.; Frenkel, D.; Meijer, E.W. Spatiotemporal control and superselectivity in supramolecular polymers using multivalency. Proceedings of the National Academy of Sciences, 2013, 110(30), 12203-12208. doi: 10.1073/pnas.1303109110